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equation can be expressed as a linear combination of a fundamental set of solutions
Y1,---,n, it follows that any solution of Eq. (2) can be written as

y=cyi(®) +c2y2(t) + -+ + cayu(t) + Y (), (16)
where Y is some particular solution of the nonhomogeneous equation (2). The linear
combination (16) is called the general solution of the nonhomogeneous equation (2).

Thus the primary problem is to determine a fundamental set of solutions YisewosVn
of the homogeneous equation (4). If the coefficients are constants, this is a fairly
simple problem; it is discussed in the next section. If the coefficients are not constants,
it is usually necessary to use numerical methods such as those in Chapter 8 or series
methods similar to those in Chapter 5. These tend to become more cumbersome as
the order of the equation increases.

To find a particular solution Y (¢) in Eq. (16), the methods of undetermined coef-
ficients and variation of parameters are again available. They are discussed and
illustrated in Sections 4.3 and 4.4, respectively.

The method of reduction of order (Section 3.4) also applies to nth order linear
equations. If y; is one solution of Eq. (4), then the substitution y = v(t)y;(¢) leads to
a linear differential equation of order n — 1 for v’ (see Problem 26 for the case when
n = 3). However,if n > 3, the reduced equation is itself at least of second order, and
only rarely will it be significantly simpler than the original equation. Thus, in practice,
reduction of order is seldom useful for equations of higher than second order.

PROBLEMS In each of Problems 1 through 6, determine intervals in which solutions are sure to exist.
T Loy 43y =1 2. ty” + (sint)y” + 3y = cost
3.1t = DyW +efy” +4r7y =0 4. y" +1y" + 12y + By = Int
5. (0= Dy™ + (x + 1)y” + (tanx)y =0 6. (x* — 4)y® +x%y" + 9y =0

In each of Problems 7 through 10, determine whether the given functions are linearly depen-
dent or linearly independent. If they are linearly dependent, find a linear relation among
them.

1. A0 =2t=3, L(=r+1, f(t)=2C2—1
8. fiy=2t=3, HL)=202+1, fs(t) =32 +1
9. i =2-3, H(O=r+1, fit)y=202—1, fi) =L +t+1
10. iy =2t=3, ()= +1, fiO=202—1, i =1>+1+1

In each of Problems 11 through 16, verify that the given functions are solutions of the
differential equation, and determine their Wronskian.

11. y"+y =0; 1, cost, sint

12. y9 4 y" =0; 1, t, cost, sint
Y +2y"—y =2y =0; e, e’ e

14. y9 4+ 2y" 4y = 0; 1, 1, e, te!
xy" —y"=0; ;, » =%

16. X3y" +x%" —2xy' +2y=0; x, x%, 1/x

17. Show that W(5,sin’t,cos2f) = 0 for all r. Can you establish this result without direct
evaluation of the Wronskian?

18. Verify that the differential operator defined by

Lyl=y" +pi@)y" D + .-+ p, )y
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PROBLEMS

The method of undetermined coefficients can be used whenever it is possible to
guess the correct form for Y (r). However, this is usually impossible for differential
equations not having constant coefficients, or for nonhomogeneous terms other than
the type described previously. For more complicated problems we can use the method
of variation of parameters, which is discussed in the next section.

In each of Problems 1 through 8, determine the general solution of the given differential
equation.

Ly =y —y+y=2e"+3 2.y —y =3t +cost
3 yrr'+y/'+y’+y=e"+4[ 4, y”’—y’=2sinr

YO 4y =2 4ot <4) +2y"+y=3+cos2t
7. YO +y" =1 8. y¥ +y" =sin2s

In each of Problems 9 through 12, find the solution of the given initial value problem. Then
plot a graph of the solution.

9. y"+4y' =1y y©0)=y(0)=0, y'@0)=1
10. y® +2y" +y =3t + 4; y0)=y'(0)=0, y"0)=y"0)=1

Wy -3+ =t4e; YO =1, yoO=-1 y@©=-12

12. y9 +2y" +y" + 8y — 12y = 12sint — e"; y(©0) =3, y(0) =0,

Y0 =-1, y"0)=2
In each of Problems 13 through 18, determine a suitable form for Y (¢) if the method of
undetermined coefficients is to be used. Do not evaluate the constants.

13. y" =2y" +y =13 + 2! 14. y" —y =te™" 4+ 2cost
15. y® —2y" 4y = ¢! +sin¢ 16. y® +4y” =sin2t +te' + 4
17. y® —y” —y" 4y = 2 4 4 + rsint 18. y@ +2y” 42y =3¢' +2te" +e~'sint

19. Consider the nonhomogeneous nth order linear differential equation
ay™ +ay" ™+ +a,y = g(0), @i
where ay, . .. ,a, are constants. Verify that if g(¢) is of the form
e (bot™ + -+ + by),
then the substitution y = e*'u(r) reduces Eq. (i) to the form
kou™ + kyu™V + . kyu = bot™ +--- + b, (ii)

where ky, ..., k, are constants. Determine ko and k,, in terms of the a’s and «. Thus the
problem of determining a particular solution of the original equation is reduced to the sim-
pler problem of determining a particular solution of an equation with constant coefficients
and a polynomial for the nonhomogeneous term.

Method of Annihilators. In Problems 20 through 22, we consider another way of arriving at
the proper form of Y () for use in the method of undetermined coefficients. The procedure
is based on the observation that exponential, polynomial, or sinusoidal terms (or sums and
products of such terms) can be viewed as solutions of certain linear homogeneous differential
equations with constant coefficients. It is convenient to use the symbol D for d/dt. Then, for
example, e~ is a solution of (D + 1)y = 0; the differential operator D + 1 is said to annihilate,
or to be an annihilator of, e~'. In the same way, D? + 4 is an annihilator of sin 2 or cos 2t,
(D —3)? = D* — 6D +9 is an annihilator of ¥ or te¥, and so forth.
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In each of Problems 7 through 10, follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7.
9.

173 8. (1—i?
1174 10. [2(cos /3 + isin 7/3)]'/?

In each of Problems 11 through 28, find the general solution of the given differential equation.

@y"'—y”—y'-i—y:O 12, y" =3y"+3y'—y =0
13. 2y" — dy" — 2y + 4y =0 14,y — 4y 44y = 0
@) yo +y=0 16. y9 = 5y" + 4y =0
17. y©® —3y® £ 3y" —y =0 18. y©® —y" =0
19. y© —3y® 43y —3y" +2y' =0 20. y9 -8y’ =0
@y““) +8y@ +16y =0 22. yO 42y +y =0
23. y" =5y" 43y +y=0 24, y" +5y" 46y +2y =0
25. 18y +21y" + 14y +4y =0 026,y —Ty" +6y” + 30y — 36y=0
27. 12y 4+ 31y 4+ T5y"+ 37+ Sy = 0 70, 28. y + 6y + 17y + 22y + 14y = 0

In each of Problems 29 through 36, find the solution of the given initial value problem, and
plot its graph. How does the solution behave as t — co?

.29,
230 y9+y=0;  y0 =0, y©0) =0, y'©0)=-1, y"(0)=0

Y=y =0, y1)=-1, yQ)=2, y'1)=0, y"(1)=0

Y=Y Y —y=0; y0)=2, yO0)=-1, y"0)=-2

D2y =y =9y + 4y +4y=0;  y(0)=-2, y(©0)=0, y'©0)=-2 y"0)=0
Sy +y +5y=0,  y0)=2, y©O0) =1, y"(0)=-1

SO+ +y =0, y0)=-2, y(0) =2, y'0)=0

LYW+ 6y +17y" + 22y 4 14y = 0; yO =1, y©0) =-2, y"(0)=0,

38.

39.

Y'+y =0; y0)=0, yO) =1, y"0)=2

ym(o) - 3

. Show that the general solution of y® — y = 0 can be written as

Yy =c1Cost+cysint + ¢z cosht + ¢4 sinh .

Determine the solution satisfying the initial conditions y(0) = 0, y'(0) = 0, y'(0) =1,
¥”(0) = 1. Why is it convenient to use the solutions cosh ¢ and sinh ¢ rather than ¢’ and
e'?

Consider the equation y® — y = 0.

(a) Use Abel’s formula [Problem 20(d) of Section 4.1] to find the Wronskian of a
fundamental set of solutions of the given equation.

(b) Determine the Wronskian of the solutions ', e~', cost, and sin .

(c) Determine the Wronskian of the solutions cosh, sinh¢, cost, and sin .

Consider the spring-mass system, shown in Figure 4.2.4, consisting of two unit masses
suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.

(a) Show that the displacements «; and u, of the masses from their respective equilibrium
positions satisfy the equations

uy + 5uy = 2uy, uy + 2up = 2u. @)



